

Protein-ligand binding/docking is crucial for drug discovery

- Sampling-based method: accurate, but requires large space of sampling candidates, scoring function learning \rightarrow High cost and low speed
- **Regression-based method**: fast, directly predict the docking pose. \rightarrow Accuracy is not as good as sampling method

FABind: fast and accurate protein-ligand binding

- Unified network for pocket prediction and docking process
- End-to-end framework, input rigid protein and random molecule conformation, then output the predicted pose
- Scheduled sampling, training with predicted pocket

- Independent message passing: inside protein and molecule
- Cross-attention update: cross protein and molecule
- Interfacial message passing: on the protein-molecule contact surface

FABind: Fast and Accurate Protein-Ligand Binding

Qizhi Pei*, Kaiyuan Gao*, Lijun Wu#, Jinhua Zhu, Yingce Xia, Shufang Xie, Tao Qin, Kun He, Tie-Yan Liu, Rui Yan# https://github.com/QizhiPei/FABind

Pocket prediction

- Pocket classification

$$L_{p}^{c} = -\frac{1}{n_{p}} \sum_{j=1}^{n_{p}} [y_{j} \log(p_{j}) + (1 - y_{j}) \log(1 - p_{j})]$$

Constraint for pocket center coordinates $\exp((\log(p_j) + g_j) /$

$$\gamma_{j}^{p} = \frac{/}{\sum_{k'=1}^{n_{p}} \exp(\log(p_{k'}) + g_{k'})} L_{pocket}^{c2r} = l_{Hub}} L_{pocket}^{c2r} = l_{Hub}}$$

Docking

Direct coordinates prediction $L_{coord} = l_{Hi}$ **Constraint by distance matrix** $\widetilde{D_{ij}} = \left\| \mathbf{x}_i^L - \mathbf{x}_j^L \right\|,$ $L_{dist} = \frac{1}{n^{l}n^{p*}} \left\{ \sum \sum \left[\left(D_{ij} - \widetilde{D_{ij}} \right)^2 \right] \right\}$

 $L_{docking} = L_{coord} + \beta L_{dist}$

Comprehensive loss for joint optimization

$$L = L_{pocket} +$$

Experimental results

• Blind self-docking performance on the whole test set

	Ligand RMSD					Centroid Distance							
	Percentiles ↓			% Below \uparrow			Percentiles ↓			% Below \uparrow		Average	
Methods	25%	50%	75%	Mean	2Å	5Å	25%	50%	75%	Mean	2Å	5Å	Runtime (s)
QVINA-W	2.5	7.7	23.7	13.6	20.9	40.2	0.9	3.7	22.9	11.9	41.0	54.6	49*
GNINA	2.8	8.7	22.1	13.3	21.2	37.1	1.0	4.5	21.2	11.5	36.0	52.0	146
SMINA	3.8	8.1	17.9	12.1	13.5	33.9	1.3	3.7	16.2	9.8	38.0	55.9	146*
GLIDE	2.6	9.3	28.1	16.2	21.8	33.6	0.8	5.6	26.9	14.4	36.1	48.7	1405*
VINA	5.7	10.7	21.4	14.7	5.5	21.2	1.9	6.2	20.1	12.1	26.5	47.1	205*
EquiBind	3.8	6.2	10.3	8.2	5.5	39.1	1.3	2.6	7.4	5.6	40.0	67.5	0.03
TANKBIND	2.6	4.2	7.6	7.8	17.6	57.8	0.8	1.7	4.3	5.9	55.0	77.8	0.87
E3BIND	2.1	3.8	7.8	<u>7.2</u>	23.4	60.0	0.8	1.5	4.0	<u>5.1</u>	60.0	78.8	0.44
DIFFDOCK (1)	2.4	4.9	8.9	8.3	20.4	51.0	0.7	1.8	4.5	5.8	54.1	76.8	2.72
DIFFDOCK (10)	<u>1.6</u>	3.8	7.9	7.4	32.4	59.7	<u>0.6</u>	1.4	<u>3.6</u>	5.2	<u>60.7</u>	79.8	20.81
DIFFDOCK (40)	1.5	<u>3.5</u>	<u>7.4</u>	7.4	36.0	<u>61.7</u>	0.5	1.2	3.3	5.4	62.9	80.2	82.83
FABIND	1.7	3.1	6.7	6.4	<u>33.1</u>	64.2	0.7	<u>1.3</u>	<u>3.6</u>	4.7	60.3	80.2	0.12

 $ber(x^p, x^{p*})$ $L_p^c + \alpha L_p^{c2r}$

$$uber(x^L, x^*)$$

$$\widehat{D_{ij}} = MLP(z_{ij}^L)^2 + (D_{ij} - \widehat{D_{ij}})^2 + \gamma(\widetilde{D_{ij}} - \widehat{D_{ij}})^2]\}$$

L_{docking}

• Blind self-docking performance on the unseen receptors

Ligand RMSD					Centroid Distance								
	Percentiles ↓			% Be	$low \uparrow$	Percentiles \downarrow			% Below ↑		Average		
Methods	25%	50%	75%	Mean	2Å	5Å	25%	50%	75%	Mean	2Å	5Å	Runtime (s)
QVINA-W	3.4	10.3	28.1	16.9	15.3	31.9	1.3	6.5	26.8	15.2	35.4	47.9	49*
GNINA	4.5	13.4	27.8	16.7	13.9	27.8	2.0	10.1	27.0	15.1	25.7	39.5	146
SMINA	4.8	10.9	26.0	15.7	9.0	25.7	1.6	6.5	25.7	13.6	29.9	41.7	146*
GLIDE	3.4	18.0	31.4	19.6	19.6	28.7	1.1	17.6	29.1	18.1	29.4	40.6	1405*
VINA	7.9	16.6	27.1	18.7	1.4	12.0	2.4	15.7	26.2	16.1	20.4	37.3	205*
EQUIBIND	5.9	9.1	14.3	11.3	0.7	18.8	2.6	6.3	12.9	8.9	16.7	43.8	0.03
TANKBIND	3.4	<u>5.7</u>	10.8	10.5	3.5	<u>43.7</u>	1.2	2.6	8.4	8.2	40.9	<u>70.8</u>	0.87
E3BIND	3.0	6.1	10.2	<u>10.1</u>	6.3	38.9	1.2	<u>2.3</u>	7.0	7.6	<u>43.8</u>	66.0	0.44
DIFFDOCK (1)	4.1	7.2	18.2	12.5	8.1	33.1	1.4	3.7	16.7	10.0	33.6	58.3	2.72
DIFFDOCK (10)	3.2	6.4	16.5	11.8	14.2	38.7	1.1	2.8	13.3	9.3	39.7	62.6	20.81
DIFFDOCK (40)	<u>2.8</u>	6.4	16.3	12.0	<u>17.2</u>	42.3	<u>1.0</u>	2.7	14.2	9.8	43.3	62.6	82.83
FABIND	2.2	3.4	8.3	7.7	19.4	60.4	0.9	1.5	4.7	5.9	57.6	75.7	0.12

Blind self-docking performance on Apo proteins

Method

GNINA SMINA

EquiBind TANKBIND P2RANK+SMINA P2RANK+GNINA EQUIBIND+SMINA EQUIBIND+GNINA DIFFDOCK (10) DIFFDOCK (40)

FABIND

Cases demonstration

(a) PDB: 6N93

NEURAL INFORMATION PROCESSING SYSTEMS

Contact: Qizhi Pei, Lijun Wu

Project Page

E-mail:

<u>qizhipei@ruc.edu.cn</u> lijuwu@microsoft.con

Apo ESMFold proteins Top-1 RMSD					
%<2	Med.				
2.0	22.3				
3.4	15.4				
1.7	7.1				
10.4	5.4				
4.6	10.0				
8.6	11.2				
4.3	8.3				
10.2	8.8				
21.7	5.0				
20.3	5.1				
24.9	4.2				

Pocket prediction performance

	DCC	% Bel	low ↑
Methods	3Å	4Å	5Å
TankBind E3Bind	18.2 26.7	32.0 35.8	39.9 50.1
P2Rank	36.4	50.1	57.0
FABIND - LIGAND INFORMATION - CENTER CONSTRAINT	42.7 36.9 8.8	56.5 51.5 22.9	62.8 59.0 31.7

Ablation study

Methods	RMSD Mean (Å)↓	RMSD % Below 2Å↑
FABIND	6.4	33.1
NO SCHEDULED SAMPLING	6.4	28.7
COORD LOSS ONLY	6.9	16.3
NO ITERATIVE REFINEMENT	6.6	22.5
NO CROSS-ATTENTION	6.4	21.4

